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A connection is described between the polygonal approximation of a compact
convex set in R' and some dynamical systems on the unit circumference in R'.
Based on this a numerical procedure is proposed for finding a best approximating
n-gon for an arbitrary compact convex set in R' (w.r.t. Hausdorff metric). The
algorithm provides a solution to a specific global optimization problem where the
function to be minimized has more than one local minimum. In one of its
equivalent formulations the above approximation problem can be considered as a
specific spline approximation problem. From this point of view our algorithm
provides also a solution to a specific variable knots spline approximation problem.
(' 1993 Academic Press. Inc

1. INTRODUCTION

Let R~ be the usual plane with the Euclidean norm I . I and let CONY
be the set of all convex compact subsets of R~. In CONY we consider the
so-called Hausdorff metric which is defined by the formula II(A I' A ~) =
inf{t>O:A,cA~+tB, A~cAI+tB} where B={PER2:IPI:;;:;1} is the
unit circle in R~, CI+C~={P'+P2:PiEC;,i=I,2} is the Minkowski
sum of sets C j ,C2 , and tB={tP:PEB}. For a given integer n~3 we
denote by POLY" the set of all convex polygons with not more than 12

vertices. For a given set A the n-gon .do E POLY" will be called a
best Hausdorff approximation of A in POLY" if h(A,Aol=inf{h(A,A):
.d E POLY,,}. The existence of at least one best approximation for A (in
any POLY,,) is a corollary of the wel1-known Blaschke "selection theorem"
asserting that every bounded sequence of sets from POLY" (n-fixed)
contains a subsequence converging in the Hausdorff metric to some n-gon.
In general, however, the best approximation is not unique.
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We show here that there exists a natural connection between the above
approximation problem and some dynamical system on the unit circum
ference S of R 2 (under "dynamical systems" we understand here a family of
homeomorphisms of S into itself). Based on this connection we give here
an algorithm for finding a best approximation in POLY" for an arbitrary
A ECONV.

Our procedure contains several steps. Given the set A E CONV, we first
associate with each number e > 0 some order preserving homeomorphism
T, of S onto itself. This is done in such a way that the rotational number
r(e) of T" is a nondecreasing function of e > 0 and, moreover, the number
e,~ :=min{e>O: r(e)= lin} is equal to the distance between A and its best
approximations in POLY",

In the second step we take an arbitrary unit vector e E S and generate the
iterations

TAe), T;(e), ..., T;(e), ...

It turns out that this sequence approximates very well some n-periodical
sequence {ek} k;. Ie S such that all eb k = I, 2, ..., n are "outward" unit
normals to the sides of some polygon L1 which is a best approximation for
A in POLY". This suffices to construct (in the third step) the best
approximating polygon L1 E POLY".

In one of its equivalent formulations the above problem can be
considered as a specific spline approximation problem. From this point of
view our algorithm provides a solution to a specific variable knots spline
approximation problem. It also gives a solution to a particular global
optimization problem where the function to be minimized has more than
one local minimum.

Some other aspects of the polygonal approximations of plane convex sets
are contained in the papers of Popov [P], Toth [T], McLure and
Vitale [MeV], Georgiev [Ge], Gruber and Kenderov [GK], Nedelcheva
[Ne], etc.

2. NECESSARY RESULTS FROM CONVEXITY AND
THE THEORY OF DYNAMICAL SYSTEMS

We denote the scalar product of two vectors (points) PI' P 2 in the plane
R 2 by <PI, P2 ). Thus the Euclidean norm of some PE R 2 is IPI =
J<P, P). For a given A E CONV we denote by SA the support function of
A defined in R 2 by the formula SA(P) = max{ <P, X): X E A}. This function
is convex, positively homogeneous, and continuous. It is completely deter
mined by its values on the unit circumference S:= {P E R 2

: IPI = I}. For
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every A, AI' A2 ECONV and t>O we have SA1+ A ,=S41 +SA, and StA = ts4.
Moreover A,cA 2 iff sA1(e)~sAl(e) for every eES. These facts, together
with the observation that the support function of B = {P E R 2

: IPI ~ 1} on
S is the constant 1, show that the Hausdorff distance between two sets
A I' A 2 E CONY can be represented as follows: h(A I' A 2) = inf{ t > 0:
s41(e)~sA,(e)+t,sAl(e)~sA1(e)+t for every eES}=inf{t>O: ISA1(e)
s41(e II ~ t for every e E S} = max {Is A1(e) - SAl(e)[: e E S}. This means that
the mapping assigning to each A ECONY the function SA from the space
C(S) of all continuous functions in S is an isometry when CONY is given
the Hausdorff metric and C(S) is equipped with the usual "sup" norm.
Having this in mind we see that the problem of approximating an
A ECONY (with respect to the Hausdorff distance) by elements of
POLYn' n ~ 3, is equivalent to the approximation (in the sup-norm in
C(S)) of SA by support functions of n-gons.

Let L1 E POLYn be an n-gon with different vertices PI' P 2 , ... , P" (taken
in the counterclockwise direction). The so called "side directions" of L1 are
the unit vectors e j , i= 1, 2, ... , n, such that e j is perpendicular to the side
PjP j+ 1 of L1 (Pn+I=Ptl and is directed "outward L1." Of course, s.J(e) =

max{ <Pj, e): i= 1, 2, ..., n} and s.J(e;) = <Pj, e j ) = <Pj + l , e j ), i= 1, 2, ... , n.
On the arc [ej,ej+l]cS (taken again in the counterclockwise direction)
s.J(e) = <P j+ l' e). In this sense s.J(e) is a "spline" of functions of the type
<P, e) (P is fixed and e is the variable) with knots at the side directions
e j , i= 1, 2, ... , n. If S is identified with the segment [0, 2n], then S,1(41) is a
spline of functions of the type a cos (41 - a) where a and a are fixed.

For a given ME R 2 and A E CONY we denote by d(M, A) the distance
from M to A, i.e., d(M,A)=min{IM-XI:XEA}. If M¢A then
d(M, A) > 0 and there exists a uniquely determined "nearest point"
N = N(M) for M in the set A: N E A and 1M - NI = d(M, A).

DEFINITION 2.1. The n-gon L1 = (PI.' P 2 , ... , P,,) is said to be alternating
for the set A E CONY if for each i = 1, 2, ..., n

(a) d(P j , A)=h(A, L1),

(b) sA(e;)-s.J(e;)=h(A,L1).

If Nj=N(Pj ) is the nearest point in A for Pj, i=I,2, ... ,n, and e;*:=
(P,- NJ/d(P j, A), then the unit vectors e~, eJ , ej, e2 , ... , e,~, en appear one
by one in the counterclockwise direction on S and for each i = 1, 2, ... , n,
h(A, L1)=sA(e j)-s.AeJ=sA(e,*)-s.J(e;*). This explains the notion "n-gon
alternating for A." The 3-gon L1 = (P I' P 2' P3) in Fig. 2.1 is alternating for
the set A.

The following theorem (see Theorem 3.1 in [Ke]) shows the role played
by the alternating n-gons in the polygonal approximation of a given
A ECONV.



4 KENDEROV AND KIROV

FIGURE 2.1

THEOREM 2.2. If' ,1 is a hest Hausdorfl approximation in POLY" for
some A E CONY, then ,1 is alternating .I()r A.

Thus, the alternating property is a necessary condition for ,1 to be a best
approximation for A in POLY". However, unlike the Cebishev approxima
tion by polynomials, this condition is very far from being a sufficient one.
The next assertion shows that there are many n-gons alternating for a given
A and, in general, their distance from A is not one and the same.

THEOREM 2.3 (see 4.10 from [Ke]). LetAECONV\POLY"andeES.
Then there exists a unique n-gon ,1 ,,(e) E POLY" which is alternating .I(Jr A
and has e among its side directions.

In fact (see 4.12 from [Ke]), A,,(e) provides the best Hausdorff
approximation for A in the set of all elements of POLY" having e among
their side directions.

Since there is an efficient algorithm (see Sect. 3 of this paper) for finding
,1,,(e), Theorems 2.2 and 2.3 reduce our problem of finding best Hausdorff
approximation for A in POLY" to the minimization of the function
t,,(e) := h(A, L1,,(e)) over e E S. This approach was already used by Yotov
and Christov [YC] for the partial case when A is a polygon with more
than n vertices. However, to minimize t,,(e) over eE S is not a trivial task.
There are at least two kinds of difficulties. As seen from Fig. 2.2 (a), (b),
and (c) where the graphs of t,,(e) for different A's and n's are plotted, the
function t,,(e) can have many local minima and this is an obstacle for the
numerical optimization.

Another obstacle is the fact that the function t,,(e) is not obliged to be
everywhere differentiable and the standard optimization procedures can
not be applied.

In this paper we suggest a way to avoid these difficulties. It is based on
some simple considerations from the theory of dynamical systems in S.
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FIG. 2.2. Graph of functions (n(e). Corresponding sets A are also depicted; the unit vec
tors e E S are identified in a natural way with the real numbers from [0, 211:].

Construction 2.4. Let A E CONY have interior points. Let e > O. We
define now a mapping (dynamical system) T( . , e): S -> S in the following
way. For eES consider the line (see Fig.2.3) L={XER 2:<e,X)=
sA(e) - c} and a point P(e) E A + cB (the e-neighborhood of A) for which
s,4(e)+c= <P(e), e). The intersection of L and A +eB is a segment
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FJGURE 2.3

M 1 M 2' Without loss of generality we may consider that the point M 1

"comes first" when the boundary of A + eB is run over in the counter clock
wise direction starting from Pte) (this means that the interior of A + eB
remains always on the left-hand side). Denote by et the unit vector
(M, - N(Md)/e where, as above, N(Md is the nearest point in A for MI'
Further, denote by T(e, e) the only unit vector e' E S for which s4(e') - e =
<e', M 1) and e' E [et, -en (the arc [et, -en is taken in counterclock
wise direction).

The correctness of this construction is easily seen from the following fact
(see Proposition 2.1 of [Ke]):

For every M j with d(MJ,A)=e the function sA(e)-<e,M J) strictly
increases (when e runs over the arc [et, -en) from -d(M 1 , A)= -e (for
e = e t) to d( M l' A) = e for some e = e' and takes values greater than e in
the open arc (e', -et). Thus the point M J = MJ(E, e) and the unit vectors
et = et(e, e) and T(e, e) are completely determined by the following
conditions:

(a) SA(C)- <e, M 1 ) =sA(T(e, e))- <T(e, e), M 1>=d(M" A);

(b) et E [e, -e];

(c) T(e, e) E [et, -etJ.

The length of the arc [e, T(e, e)] (again in counterclockwise direction) is
strictly between 0 and 2n.

In the special case when A is a circle of radius r, T( . , e): S -+ S is just
the rotation in the counterclockwise direction by the angle 2 arccos( (r - e)/
(r + e)).

Denote by R + the set of all positive real numbers. For us the important
properties of the mapping T(·,·): S x R + -+ S assigning to each pair
(e,e)ESxR+ the element T(C,f:)ES are gathered in the following
assertion.
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PROPOSITION 2.5. (i) T is continuous at every point (eo, co) E S x R +.

(ii) Ifc l >c2, then for every eES T(e,c 2) helongs to the open arc
(e, T(e, cd) (again taken in the counterclockwise direction).

(iii) For a fixed c the mapping T( " c): S -> S is one-to-one, onto S,
and "preserves the order," i.e., if e2E(e!, T(e l , f.)) then T(el,f.)E
(e 2, T(e2' f.)).

This is contained in the proof of Proposition 2.7 from [Ke].
When c > 0 is fixed, the behavior of the sequence of iterations

e, T(e, f.), T 2(e, f.), ..., T"(e, c), ... ,

where eES, Tk+l(e,f.)=T(Tk(e,c),f.), and TO(e,c):=e, is of special
importance for us. For instance, if the sequence is periodical (with minimal
period k) and makes only one turn around S for k steps, then the sequence
{ T n

( e, t.)} n;" L consists of side directions of some k-gon ,1 which is alter
nating for the set A and h(A, ,1) = f.. It is easy to find the vertices of ,1 in
this case. For every pair of successive side directions e' = r(e, f.) and
eO = T i + I(e, c) the intersection point of the lines L' = {PE R 2: (e', P) =
sA(e')-c} and LO= {PER 2: (eO, P)=sA(eO)- c} is a vertex of ,1.

One could not expect that for every e E S the sequence {T"(e, c)}";,,°will
be k-periodical. However, the following statement is true.

COROLLARY 2.6. If there exists an alternating k-gon ,10 for the set
A E CONY y,'ith h(A, .do) > 0, then for every e E S the sequence
(T"(e,f.)}";,,o, where c=h(A,.d o), will he "asymptotically" k-periodical.
This means that {Tk"(e,c)}";,,o is a convergent suhsequence and for
e=limn~xTk"(e,c) the sequence (T"(e, c)}";,,o is k-periodical and consists
of side directions of some k-gon J which is alternating for A with c = h(A, J).
In general J is not obliged to coincide with .do.

All this follows from Construction 2.4 and the next well-known theorem
about dynamical systems in S (see, for instance, [Ni]).

THEOREM 2.7. Let T: S -> S he an order preserving homeomorphism of'S
onto itself Let there exist some eo E S for which the sequence {T"eo}";,, 0 is
periodical with minimal period k. Then for every e E S the sequence {T"e }";,, 0

is asymptotically k-periodical, i.e., {T"ke }";,, ° converges to some e* E S. In
particular, Tke* = e* and the sequence {T"e*}";,, 0 is k-periodical.

It should be noted also that for our approximation problem only those
k-periodical sequences {T"( e, c) }";,, 0 are of interest for which just one turn
around S is done for k iterations. If more turns around S are made for k
iterations, then the corresponding k-gon is not convex.
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We will need one more thing from the dynamical system theory. Denote
by :x(e) the length of the arc [e, T(e, e)] and put for k = 1,2, ...

fk(e,e):=a(e)+:x(T(e,B))+'" +:x(Tk l(e,e)).

It is known (see [Ni]) that the sequence {fk(e, D)/k}k~l is convergent for
every e E S and its limit does not depend on e E S.

DEFINITION 2.8. The number

1 . fk(e, e)
r(e)=- 11m ---

2rc k ~ x k

is called a rotation number of T( . , I;).

It is known (see [Ni]) that r(l:)=plq, for some positive integers P and
q without common divisors, if and only if for at least one e E S the sequence
{T"(e, e)}" ~ 0 is q-periodical and r(e, e) = 2prc (i.e., for q iterations of e by
T the length of S is run over P times in the counterclockwise direction).

COROLLARY 2.9. Let I: = h(A, A), Il'here the convex polygon A is alter
nating for A. Then r(l:) = 11k if and only if A is a (nondegenerate) k-gon.

Proof Starting from a side direction of A one gets the periodical
sequence {T"(e, e)}" ~ () consisting of all side directions of A. Moreover, one
turn around S is done for k iterations, where k is the number of different
side directions of A. This is the case if and only if r(c;) = 11k. I

PROPOSITION 2.10. The function r(e) is nondecreasing and continuous.

Proof The continuity of r(e) follows from more general considerations
but we give here a self-contained proof. The monotonicity of fk(e, e) (as a
function of I: > 0) follows from (ii) and (iii) of Proposition 2.5. This implies
that r(l:) is a nondecreasing function of e. Such a function is discontinuous
at some 1:0 if and only if

lim r(B) < lim r(e)

(i.e., r(e) has a jump at eo). Therefore, the rest of the proof is contained in
the next assertion. I

LEMMA 2.11. Let r(O) := lim, ~ 0 r(e) and r( oc) := lim, ~x r(I:). For every
rational number plq with r(O) < plq < r( Cf)) there exists an I: > 0 such that
r(e) = plq.
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Proof There exist e2> e I > °such that r( ed < plq < r(e2). If s = nq, then

When s=nq is large enough, (I/2n)(l/nq)rq(e,ed«plq). On the other
hand, since (l/2n)(l/nq)rq(e, e l ) is a mean value of the numbers
(1/2n)(l/q)fq(T iq(e, ed, ed, i=O,I, ...,n-t, at least one of them is
smaller than plq. This means that e l E S exists for which
(1/2n:)(I/q)fQ(e l ,ed«plq). Reasoning in an analogous way we deduce
that there exists some e2 E S for which (1/2n:)( I/q )r(e2, [;2) > (p/q). Hence
r(e" e1 ) < 2pn: <fQ(e2' e2)· Since fQ( " . ) is a continuous function and its
domain S x R + is a connected set, there exist eE Sand f, > 0 such that
fQ(e, f,) = 2pn. Evidently fQ( T'Q(e, f,), f,) = 2pn. Therefore

I I I I n - 1

r(f,)=- lim -rq(e,f.)=- lim - L r(T'q(e, f,), f,)=E. I
2n n_,x. nq 2n: n-x nq i~O q

COROLLARY 2.12. For every integer k> I the set {e>O: r(e)= Ilk} is a
(possibly degenerate) segment which is a closed subset of R + .

In Fig. 2.4 the graphs of r(e) are plotted for different sets A.

(a)

A

£

(b)
. r

FIGCRE 2,4
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3. ALGORITHMS AND NUMERICAL RESULTS

Later in this section we will present an algorithm for the numerical
computation of T(e, 1:). Now we will show how the possibility to calculate
T(e, 1:) can be used in order to solve our problem of polygonal approxima
tion of some A ECONY. When I: > 0 and e E S are given, there is an
attractive way to find a polygon .1 which is alternating for A and
h(A, .1)=1:. One has to look at the behavior of the sequence {T/I(e, e)}/I;>o,
If it is recognized as "asymptotically k-periodical," then a k-gon .1 with the
desired properties can be constructed because we will know its side
directions. Unfortunately, Corollary 2.6 and Theorem 2.7 do not give any
estimates for the rate of convergence of the sequence {T"k(e, e) },,;,O and it
is not easy to forecast the number of iterations needed to reveal the
periodicity of the sequence {T/I(e, c)}/I;'o, Numerical experiments show,
however, that 20-30 iterations of T suffice to establish the asymptotic
k-periodicity of that sequence (at least for k = 3, k = 4). In particular, if the
number c: = min {h(A, .1): .1 E POLYd is taken as e, then after relatively
few iterations the sequence {T/I(e, c)} /I;' ° will provide the side direction of
a k-gon .1 0 which will be a best Hausdorff approximation for A in POLY k'

This remark reduces our approximation problem to the finding of 1::. By
Theorem 2.2 e:=min{h(A,L1): L1EPOLY k and L1 is alternating for A}.
Having in mind Corollary 2.9 we see that <;,t=min{e>O:r(c)= Ilk}.
The numerical procedure for the calculation of B: is now suggested by
Proposition 2.10.

3.1. An Algorithm for the Calculation of Br
If there were an efficient algorithm for the calculation of r(e), for every

c E R +, then solving an equation of the type r( c) = t, where t E R, would not
be a difficult problem at all. For instance, one could use the bisection
method in order to localize er Unfortunately the definition of r(e) as
lim,,~.xc (f/l(e,e)/2nn) does not provide a good tool for the numerical
calculation of r(e). Nevertheless we can use the specific features of our
situation in order to find a good approximation for et In fact, it is enough
to be able to estimate (for every e> 0) the sign of the difference r(e) - 11k
in order to find a better approximation for er Starting from some co> 0
we can take as a next approximation some e l > CO (if r(eO) - 11k < 0) or
some e1 < eO (if r(eo) - 11k> 0). Technically this can be done in different
ways. Here is one of the possibilities. Starting from some e E S produce a
prescribed (but big enough) number .I' of members of the sequence
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and calculate the number [3 = 'L7= I a(p+i(e,cO)). If [3>2n, according to
Proposition 2.5 there exists c < CO for which

k

I a(T i(e t ,c))=2n,
j= I

where e 1 = Pte, co). This means that r(c) = 11k and thus c't ~ c < co.
Therefore some c' < CO can be taken as a next approximation of c't. If
[3 < 2n, we can take some c' > CO and repeat the procedure with c I at the
place of co. If [3 = 2n, we have c't ~ CO and again c' < CO should be taken as
next approximation of c't.

3.2. An Algorithm for the Calculation of T(e, c).

Now we describe an algorithm for the calculation of T(e, c). As
mentioned in the introduction, the set A is completely determined by its
support function SA: S --. R. We will assume, however, that something more
is known about the set A. Namely, we will consider that for every e E S at
least one point P(e)=(x(e),y(e)) from the set {PEA: (e,P)=sA(e)} is
known. pre) is a point where the function (e,·) attains its maximum
on A. To find T(e, c) one proceeds as follows:

(1) Find an e*E[e, -e] such that (e,P(e)+ce)<sA(e)-c, for
every eE[e,e*] and (e, P(e)+ce) >sA(e)-c, for every eE(e*, -e]. In
other words, e* splits the arc [e, - e] into two disjoint sets of points. The
points pre) + ce are on one side of the line L = {PE R 2

: (e, P) = sAfe) - c}
for e E [e, e*) and on the other side of this line for eE (e*, - e]. The unit
vector e* can be found with satisfying accuracy by bisection method. There
occur only two possibilities.

(a) There exists (see Fig. 3.1 (a)) only one point PEA for which
(e*, P)=s4(e*). In this case P=P(e*) and we put M:=P(e*)+ce* and
proceed to step 2.

(b) There are (see Fig. 3.1(b)) at least two points P (and thus a
line segment of points P on the boundary) of A for which (e*, P) =

S A(e*). P(e*) is among these points. In this case we take a unit vector en
with (en, e*) = 0 and find t ERin such a way that (e, P(e*) + ce* +
ten) = S A(e) - c. Then we put M := P(e*) + r.e* + ten and proceed to step 2.

(2) Find e'E[e*, -e*] such that (e',M)=sA(e')-c. This is
possible because (according to Proposition 2.1 of [Ke]) the function
(e,M)-sA(e) is strictly increasing from -c (for e=e*) to c (for
e=e') and takes values greater than c in the open arc (e', -e*). Again a
bisectional procedure could be applied.

Finally we put T(e, c) := e'.
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(a)

e*
P(e*)+Ee*

(b)

A

e

F'GURE 3.1

3.3. An Algorithm for the Construction of A II(e) (see Theorem 2.3.)

According to Proposition 2.5 the function

f"(e,c)=et(e)+et(T(e,c))+,,, +et(T" '(e,e))

is an increasing and continuous function of e. For eo = 0.5 W( e), where
W(e) = sA(e) -SA( -e) = max{ <e, X>: XE A} - min{ <e, X>: XE A} is the
width of A in direction e, T(e,eo)=-e and T(-e,eo)=e. Therefore
f"(e,eo)=nn. Consequently, iff"(e,0):=limf.~0f"(e,e)<2n (this is the
case when A ¢ POLY,.), then there is some e for which f"(e, e) = 2n.
This e can be calculated by the bisection method. Evidently, e,
T(e, e), ... , Til - '(e, e) are the side directions of A,,(e) and the latter can be
constructed effectively.

On the basis of these algorithms a computer program for the IBM
PC/AT was developed which finds numerically the best approximation by
n-gons of a given A E CONY.

In Fig. 3.2 some convex sets are shown together with their best
approximating n-gons.
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(c)
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FIGURE 3.2

3.4 Remarks

Let A E CONY. If follows from Proposition 2.10 that there must exist
real numbers I: > 0 for which the corresponding rotation number r(l:) is an
irrational number. For such an 1:>0 the sequence {r(e,I:)};""o does not
"converge asymptotically" to a periodical sequence. Moreover (see [BK]),
in this case, the sequence {r(e,I:)};""o is dense in S (for every eES).
Further, if }' is an irrational number, then the set {I: > 0: r( 1:) = }'} cannot
have more than one point. This result from [BK] combined with Proposi
tion 2.10 implies that the set {I: > 0: r(l:) is rational} is dense in R +. An
expression of these facts for the case when A is a square can be seen on
Fig. 3.3(a). It represents a copy of the computer monitor. The vertical coor
dinate line consists of the segment [0, 2n] which is identified with S (in
particular, T'(e, 1:) E [0, 2n] for i = 1,2, 3, ... ). The horizontal coordinate
line consists of positive numbers. For fixed I: > 0 and e E S == [0. 2n] the



14 KENDEROV AND KIROV

points {(6, r(e, 6)) }J~(~oo are displayed on the computer monitor as points
on the vertical line passing trough 6. If for the first 100 "hidden" iterations
the sequence {r(e, 6) }.~{) "stabilizes" and "becomes k-periodical," then
the next 900 iterations will produce cyclically (on the computer monitor)
only k points above the given f: > O. For such 6 the rotation number
r(6) is rational. If r(f;) is irrational for some c > 0, then the points
{(6, T i

( e, c))} :~(~oo appear above I: without any periodicity.

(c)

FIGURE 3.3
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Figure 3.3(a) has a certain degree of self-similarity. When enlarged to the
full size of the monitor the small rectangle depicted on 3.3(a) transforms to
what is shown on 3.3(b). In turn, 3.3(c) is an enlargement of the small
rectangle from 3.3(b).

Another result related to our work is given in [Ne]. If two convex sets
A I and A 2 give rise (via Construction 2.4) to one and the same mapping
T( . , . ): S x R + -+ S, then A 1 and A 2 coincide up to a translation. This is
proved in [NeJ for the cases when A I and A 2 are either convex polygons
or smooth convex sets. One could conjecture that the result is valid for
arbitrary convex sets.

Also, it is not known to what extent the two sets A I and A 2 coincide if
rl(e) = r 2(e) for every e > 0, where ri(e) is the rotation number function of
A i ,i=1,2.
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